
Advanced Heat Transfer and 
Thermal Storage Fluids

Dan Blake, Luc Moens, Dan 
Rudnicki, Mary Jane Hale, 
Professor Ramana Reddy, 

and Greg Glatzmaier



Goals and Objectives

• The goal is to find a heat transfer and 
thermal storage fluid with  a usable liquid 
range from near 0 to above 400 °C that will 
meet the cost and performance requirements 
of parabolic trough systems.

• The near term objective (FY03) is to 
identify a fluid with the potential for service 
up to 300 °C.



Project to Date

• Synthesis and thermal stability of 
imidazolium salts and identification of other 
possible salts – NREL FY2000-present

• Physical properties, materials compatibility, 
and extended thermal stability testing – The 
University of Alabama FY2001-present

• Production Process and Cost Study - Peak 
Design Subcontract FY02



The Challenge for A New Fluid

• Low freezing point - <25 °C
• Low vapor pressure - < 1 atm at Tmax
• Low cost - < ~$4.50/Kg
• Thermal stability at > 400 °C
• Compatible with alloys and materials used 

in solar plants
• Other physical properties compatible with 

the solar application
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Table 1. Cost of reactants for synthesis of EmimBF4

Reactant Cost 
($/lb)

Cost per lb of 
EmimBF4

Glyoxal (50%)
(ethylene glycol)

1.00
(0.38)

.73
(0.12)

Formaldehyde .21 .03

Ammonia .10 .01

Methylamine .73 .11

Ethylchloride
(ethylene)

2.00
(0.23)

.64
(0.03)

Tetrafluoroboric acid 
(50%) .65 .58
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Economic Factor Value
Internal Rate of Return 15%
Depreciation Tab. 4
Recovery Period 11 years
Plant Life 21 years
Construction Period 1 year
Working Capital 15% of total capital
Federal Tax 40% of net income
State Tax 5% of net income
Salvage Value 10% of fixed capital
Debt/Equity Ratio 0/100
Plant size 10,000,000 kg/yr
Annual hours of operation 8,322 (95%)
Labor $50/hr (loaded including supervision)
Maintenance 7% of fixed capital
Electricity $0.06/kWhr
Reaction yields 100% (except glyoxal synthesis:  75%)

Table 3. Economic assumptions for the discount cash flow analysis
Peak Designs (2002)



Table 7. Required costs for EmimBF4

Process Reactant costs Other operating Capital TotalCost ($/kg)
1 4.75 0.24 0.37 5.36
2 3.30 0.25 0.37 3.92
3 2.02 0.25 0.39 2.66

Table 8. Product cost dependence on plant size and internal rate of return

Process Plant Size (106 kg/yr) Product Cost ($/kg)
1 5 5.57

10 5.36
50 5.16

2 5 4.16
10 3.92
50 3.70

3 5 2.90
10 2.66
50 2.43

Process IRR (%) Product Cost ($/kg) 
1 10 5.24

15 5.36
25 5.62

2 10 3.80
15 3.92
25 4.19

3 10 2.53
15 2.66
25 2.92



Reaction Yields* Total cost ($/kg)

100% $2.66

95 2.86

90 3.11

80 3.85
*Glyoxal yield is held at 75% in all cases

Table 9. Cost of EmimBF4 as a function 
of reaction yield (process 3)



Summary and Conclusions

• Cost goals can be met with an organic salt
• When a viable candidate is identified the 

production process must be optimized



Longer term stability test of 
[C8mim]PF6
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Overall Observations

• We may have pushed the upper temperature 
limit of imidazolium salts as high as 
possible with anions – Further 
improvements may require changes in the 
imidazolium ring substituents

• A 300 °C salt appears to be within reach
• We will begin some work on alternative 

types of organic salts and mixtures 
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Corrosivity of Ionic Liquids
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Experimental Methods
Tafel extrapolation method was used to determine corrosion 
current density and calculate corrosion rates
Potentiodynamic polarization curves to analyze corrosion 
behavior of the alloys in ionic liquids
Experiments were performed at room temperature
Alloys tested:
- 1018 carbon steel
- 316 stainless steel 
- gray cast iron
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Typical Tafel Plot
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Ionic liquid
Corrosion Rate at 25ºC, in µm/yr

SS 316 1018 Carbon 
Steel

Gray Cast Iron

[C4mim]Cl 1.3 3.2
LC

8.9
LC

[C8mim]PF6 1.2 5.6 2.6

[C6mim]PF6 0.4 13.0 13.0

[C4mim][Tf2N] 1.1 11.0 20.0

Uniform Corrosion Rates of 
Solar Materials in Ionic Liquids

LC

LC = localized corrosion
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Conclusions
Materials used in solar plant technology such as 316 
stainless steel alloy, 1018 carbon steel and gray cast iron 
were found to be outstanding in corrosion resistance 
(corrosion rates: <20 µm/yr) against ionic liquids at RT
Localized corrosion was observed on the surface of the 
materials exposed to [C4mim]Cl ionic liquid
The potentiodynamic tests showed in most cases an 
active/passive corrosion behavior.  However, the ionic liquid 
[C4mim]Cl prevented the formation of stable passive films
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Heat Capacities
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Properties of Heat Transfer Fluids at 25°C
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A comparison of Volumetric Heat Capacity 
Performance 
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Viscosities of Ionic Liquids
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Viscosities of Ionic Liquids

X (AlCl3)

0.40 0.45 0.50 0.55 0.60 0.65

Lo
g 

10
 (V

is
co

si
ty

/c
p)

1.4

1.6

1.8

2.0

2.2

2.4
HMIC

X (AlCl3)

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Lo
g 

10
 (V

is
co

si
ty

/c
p)

1.2

1.4

1.6

1.8

2.0

2.2
BMIC

C4mimCl at 300K C6mimCl at 300K



THE UNIVERSITY OF ALABAMA

Long Term Thermal Stability of IL
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Evaluation of Long-term Thermal Stability
Experimental Procedure :
• Hold the ionic liquid samples at a fixed temperature for 

20 hours, 
• Then raise the temperature to a higher level and holding 

for another 20 hours until significant weight changes are 
observed.
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Weight Changes of [C4mim][Tf2N] as a Function 
of Time at Different Temperatures
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Weight Changes of [C6mim]PF6 as a Function of 
Time at Different Temperatures
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Weight Changes of [C8mim]PF6 as a Function of 
Time at Different Temperatures
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National Renewable Energy Laboratory

Schematic of  NREL’s  MBMS
Sampling System
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Proposed thermal events :

1) HF liberation at high T

2) de-alkylation of quat. amine salt
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Conclusions 
 

• Imidazolium salts offer flexibility in ‘designing’ melting 
point and thermal stability 

 
• PF6 salts are ‘easy’ to prepare and purify, and are probably 

least expensive  
 

• Onset T for thermal decomposition must be determined 
carefully.  Kinetic data are needed for evaluation of long-
term T stability 

 
• Reactivity of ANION has strong influence on T stability 

 
• Structure of imidazolium CATION appears to have less 

influence, but more work is needed  
 

• Influence of IMPURITIES on T stability of ionic liquids is 
not completely understood and is case-dependent. 

 
• Intermediate chloride salts in synthetic route must be 

avoided due to residues in final ionic fluid (corrosion) 
 

• One-Step Synthesis of ionic liquid mixtures: 
 

a) no chloride residues 
 
b) lower ‘complexity’ of synthetic process for ionic 

fluids 
 

c) possibly lower production cost 
 

d) synthetic methods must be optimized 
 
 

• Can alternative ionic liquids be developed other than the 
imidazolium salts ?  


